Extensions 1→N→G→Q→1 with N=C22≀C2 and Q=D5

Direct product G=N×Q with N=C22≀C2 and Q=D5
dρLabelID
D5×C22≀C240D5xC2^2wrC2320,1260

Semidirect products G=N:Q with N=C22≀C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C22≀C21D5 = C242D10φ: D5/C5C2 ⊆ Out C22≀C2404C2^2wrC2:1D5320,659
C22≀C22D5 = C243D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:2D5320,1261
C22≀C23D5 = C244D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:3D5320,1262
C22≀C24D5 = C24.33D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:4D5320,1263
C22≀C25D5 = C24.34D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:5D5320,1264
C22≀C26D5 = C24.35D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:6D5320,1265
C22≀C27D5 = C245D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:7D5320,1266
C22≀C28D5 = C24.36D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2:8D5320,1267
C22≀C29D5 = C24.56D10φ: trivial image80C2^2wrC2:9D5320,1258

Non-split extensions G=N.Q with N=C22≀C2 and Q=D5
extensionφ:Q→Out NdρLabelID
C22≀C2.1D5 = C242Dic5φ: D5/C5C2 ⊆ Out C22≀C2404C2^2wrC2.1D5320,94
C22≀C2.2D5 = C24.32D10φ: D5/C5C2 ⊆ Out C22≀C280C2^2wrC2.2D5320,1259

׿
×
𝔽